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Two random-walk related problems which have been studied independently in the past,
the expected maximum of a random walker in one dimension and the flux to a spherical
trap of particles undergoing discrete jumps in three dimensions, are shown to be closely
related to each other and are studied using a unified approach as a solution to a Wiener-
Hopf problem. For the flux problem, this work shows that a constant c = 0.29795219
which appeared in the context of the boundary extrapolation length, and was previously
found only numerically, can be derived analytically. The same constant enters in higher-
order corrections to the expected-maximum asymptotics. As a byproduct, we also prove
a new universal result in the context of the flux problem which is an analogue of the
Sparre Andersen theorem proved in the context of the random walker’s maximum.

KEY WORDS: Random walk, adsorption to a trap, Wiener-Hopf, diffusion, Sparre
Anderson theorem.

1. INTRODUCTION

Random walks arise in an astounding variety of problems in physics as well as
mathematics, computer science, etc., and great progress has been made in solving
many of their deep and subtle properties. Two seemingly unrelated problems, the
expected maximum of a random walker in one dimension undergoing jumps drawn
from a uniform distribution, and the flux to a trap of particles undergoing random
walks in three dimensions, have been studied independently over the last several
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years, and their solutions seem to involve a similar numerical constant 0.29795219,
a coincidence that has not been noticed before. The similarity of these constants
suggests that these two problems may be intimately related. For the first problem,
the constant was first computed numerically by evaluating a rather complicated
double series expansion(1,2) and very recently, an exact closed form expression
of the constant has been found(3) that is valid not just for the uniform jump
distribution, but for any arbitrary continuous and symmetric jump distribution.
For the second problem of flux to a spherical trap, the corresponding constant
was computed only numerically(4). Therefore, finding the relation between the two
problems raises the possibility that the flux problem can be solved analytically for
the first time. Indeed, this is what we accomplish in this paper.

The two problems we consider are:

Problem I. The asymptotic behavior of the expected maximum position of
a discrete time random walker moving on a continuous line. The position xn

of the walker after n steps evolves for n ≥ 1 via,

xn = xn−1 + ξn (1)

starting at x0 = 0, where the step lengths ξn’s are independent and identically
distributed (i.i.d.) random variables with zero mean and each drawn from the same
probability distribution, Prob(ξn ≤ x) = ∫ x

−∞ f (y) dy, f (x) being a continuous
and symmetric probability density normalized to unity. Let Mn denote the positive
maximum of the random walk up to n steps (see Fig. 1),

Mn = max(0, x1, x2, . . . , xn). (2)

We are interested in the asymptotic large-n behavior of the expected max-
imum E(Mn). This question arose some years ago in the context of a packing
problem in two dimensions where n rectangles of variable sizes are packed in
a semi-infinite strip of width one(1,2). It was shown in ref. 2 that for the special
case of the uniform jump distribution, f (x) = 1/2 for −1 ≤ x ≤ 1 and f (x) = 0
outside, for large n,

E[Mn] =
√

2n

3π
− 0.29795219028 · · · + O(n−1/2). (3)

The leading
√

n behavior is easy to understand and can be derived from the
corresponding behavior of a continuous-time Brownian motion after a suitable
rescaling(2). However, the leading finite-size correction term turns out to be a non-
trivial constant −c with c = 0.29795219028 . . . that was computed in ref. 2 by
enumerating a somewhat intricate double series obtained after a lengthy calcula-
tion. Recently, it was shown (3) that for arbitrary continuous and symmetric jump
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Fig. 1. A typical configuration of a random walker in one dimension up to n steps, starting at 0 at
n = 0 with Mn denoting the maximum up to n steps.

distribution f (x) with a finite second moment σ 2 = ∫ ∞
0 x2 f (x)dx , the expected

maximum has a similar asymptotic behavior as in the uniform case, namely,

E[Mn] = σ

√
2n

π
− c + O(n−1/2). (4)

Moreover, an exact expression for the constant c was found(3)

c = − 1

π

∫ ∞

0

dk

k2
ln

[
1 − f̂ (k)

σ 2k2/2

]
, (5)

where f̂ (k) = ∫ ∞
−∞ f (x) eikx dx is the Fourier transform of f (x). In particular, for

the uniform distribution, f (x) = 1/2 for −1 ≤ x ≤ 1 and f (x) = 0 outside, one
has f̂ (k) = sin(k)/k and one gets from Eq. (5) an exact expression,

c = − 1

π

∫ ∞

0

dk

k2
ln

[
6

k2

(
1 − sin k

k

)]
= 0.29795219028 . . . (6)

Problem II. The calculation of flux to a spherical trap in three dimensions.
Consider first the classic Smoluchowski problem(5) where point particles are ini-
tially distributed uniformly with density ρ0 outside a sphere of radius R in three
dimensions. Each particle subsequently performs continuous-time Brownian mo-
tion with a diffusion constant D, independent of each other. One is interested in
computing the flux of particles �(t) to the sphere at time t . This can be done
by solving the diffusion equation outside the sphere with an absorbing boundary
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condition on the surface of the sphere and the result is well known(5–7). One gets

�(t) = 4πRDρ0

[
1 + R√

π D t

]
. (7)

valid for all t > 0. Also, as t → ∞, the density profile outside the sphere becomes
time independent and has a simple form

ρ(r ) = ρ0

(
1 − R

r

)
(8)

for all r ≥ R. Far from the sphere the density remains unchanged from its initial
value ρ0 and as one approaches the surface of the sphere, the density vanishes.

An interesting issue, first studied in ref. 4, is how do the steady-state profile
in Eq. (8) and correspondingly the expression of flux in Eq. (7) get modified
when each of the point particles, instead of performing continuous-time Brownian
diffusion, undergoes discrete ‘Rayleigh flights’, i.e. a particle jumps, at every
discrete time step τ , a fixed step length l whose direction is chosen arbitrarily in
the three-dimensional space (see Fig. 2). In ref. 4, it was shown that the expression
for the flux, at late times t = nτ and for 0 < l ≤ 2R, now gets replaced by

�(t) = 4π (R − c′ l)D′ρ0

[
1 + R − c′ l√

π D′ t
+ O(t−3/2)

]
, (9)

where D′ = l2/6τ and c′ is a constant whose numerical value was obtained by an
iterative numerical solution of the density profile, with the result

c′ ≈ 0.29795219 (10)

The density profile ρn(r ) after n steps also gets modified rather drastically, as
found numerically in ref. 4. In particular, the steady-state density profile ρ∞(r )
in the discrete problem turns out to be quite different from its continuous-time
counterpart. While very far away from the sphere the steady-state density profile
behaves as

ρ∞(r 	 R) = ρ0

(
1 − R − c′l

r

)
(11)

where c′ is as in Eq. (10), the density actually tends to a nonzero constant as one
approaches the surface of the sphere from outside

ρ∞(r → R) = 0.408245
ρ0l

R
(12)

where the constant 0.408245 was evaluated numerically in ref. 4. This is in stark
contrast to the continuous-time Brownian case where the density vanishes on the
surface of the sphere.
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Fig. 2. Independent Rayleigh flights in three dimensions in presence of a spherical trap. The
discreteness of the jumps shows up effectively in a renormalized sphere with a smaller radius where
c′ l is the Milne extrapolation length.

The distance c′ l is the ‘Milne extrapolation length’(8–10) and represents the
distance inside the surface where the far steady-state solution in Eq. (11) extrap-
olates to ρ∞ = 0. This steady-state density distribution implies the leading-order
term of the flux given in Eq. (9). Thus at late times, the continuum formula for the
flux in Eq. (7) still remains valid for the discrete jump case, but with an effectively
smaller radius R − c′ l of the trap as in Eq. (9). Thus the effect on the flux due to
the discrete nature of the jumps, at least at late times, is simply to renormalize the
radius of the trap to a smaller value.

Comparing Eqs. (6) and (10) one finds, rather amazingly, that the two con-
stants c and c′, in these two a priori unrelated problems, are identical at least up
to 8 decimal places! This raises an interesting question: are they equal? In this
paper, we indeed prove that c = c′. In the process, we also provide exact solutions
to many other features of the flux problem that were observed numerically in
ref. 4. For example, we will calculate exactly the steady-state density profile and
will prove that indeed it approaches to a constant on the surface of the sphere
as in Eq. (12) and the constant 0.408245 is actually 1/

√
6. Our method consists

in showing that both of these problems can be cast into the same Wiener-Hopf
type problem involving an integral equation over half-space, albeit with different
initial conditions. We then obtain explicit solutions to this Wiener-Hopf prob-
lem with these two different initial conditions. The general solution turns out to
be a product of two parts, one that explicitly depends on the initial condition
and the other part which is a ‘Green’s function’ that is independent of the initial
condition. The constant c, given by the exact expression in Eq. (6), is part of
this ‘initial condition independent’ Green’s function and hence it appears in both
problems.
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2. MAXIMUM OF A RANDOM WALKER AS A

WIENER-HOPF PROBLEM

We consider a discrete time random walker hopping on a continuous line. The
position xn of the walker evolves via Eq. (1), starting at x0 = 0. The maximum
Mn , defined in Eq. (2), is a random variable. Let qn(z) = Prob(Mn ≤ z) denote
the cumulative distribution of the maximum and q ′

n(z) = dqn/dz its probability
density with x ∈ [0,∞[. Then, a simple integration by parts gives

E[Mn] =
∫ ∞

0
zq ′

n(z)dz = −
∫ ∞

0
z

d

dz
(1 − qn(z)) dz =

∫ ∞

0
(1 − qn(z)) dz,

(13)
where we have used the normalization condition, qn(∞) = 1. Using translational
invariance and the fact that the jump distribution is symmetric, one can also
interpret qn(z) as the probability that a random walker, starting initially at position
z > 0, stays positive up to step n. Then it is easy to write down, using the Markov
property of the evolution in Eq. (1), the following recurrence relation(3), valid for
all z ≥ 0,

qn(z) =
∫ ∞

0
qn−1(z′) f (z − z′) dz′, starting with q0(z) = 1. (14)

The generating function q̃(z, s) = ∑∞
n=0 qn(z)sn then satisfies an inhomogeneous

Wiener-Hopf integral equation [3]

q̃(z, s) = s

∫ ∞

0
q̃(z′, s) f (z − z′)dz′ + q0(z), (15)

where the inhomogeneous term q0(z) = 1 arises from the initial condition. We
need to thus solve this integral equation to obtain the full probability distribu-
tion qn(z) of the maximum. The mean value E[Mn] can then be computed from
Eq. (13).

3. FLUX TO A TRAP AS A WIENER-HOPF PROBLEM

We consider a sphere of radius R in three dimensions. Outside the sphere point
particles are initially distributed with uniform density ρ0. Particles subsequently
perform independent Rayleigh flights, i.e. at every time step τ , each particle,
independently of others, jumps a fixed distance l in a direction chosen randomly.
The object of interest is the flux at late times t to the sphere. For simplicity, we
assume τ = 1 (so that the jumps occur at integer steps) and also l = 1. Since
the particles are independent, one can alternately think of a single particle whose
probability density ρn(�r ) at �r after n steps evolves via the Markov equation [4]

ρn(�r ) =
∫

W (�r | �r ′)ρn−1(�r ′)d�r ′ (16)



Maximum of Random Walk and Flux to a Trap 839

where W (�r | �r ′) = δ(|�r − �r ′| − 1)/4π is the jump probability density at each step
from �r ′ to �r and the integral in Eq. (16) extends over the full three-dimensional
space outside the sphere of radius R. The recursion relation in Eq. (16) starts
with the initial condition, ρ0(�r ) = ρ0 for r > R and ρ0(�r ) = 0 for r ≤ R. Since
the initial condition is spherically symmetric, it is clear that from Eq. (16) that
this symmetry will be maintained at all n, implying ρn(�r ) = ρn(r ). Thanks to
this spherical symmetry, the three-dimensional problem thus becomes a one-
dimensional problem where one considers only the radial direction after integrating
out the angular coordinates. Defining Pn(r ) ≡ 4πr2ρn(r ) as the probability that
the particle is in the shell [r, r + dr ] after n steps, it follows that Pn(r ) evolves via
the recurrence equation

Pn(r ) =
∫

w(r | r ′)Pn−1(r ′)dr ′ starting with P0(r ) = 4πr2ρ0θ (r − R) (17)

where θ (x) is the Heaviside theta function and w(r | r ′) is the jump probability
density from radius r ′ to r , which can be easily calculated by integrating the
kernel W (�r | �r ′) over the angular coordinates(4,11)

w(r | r ′)dr = r dr

2r ′ for |r ′ − 1| < r < r ′ + 1

= 0 otherwise. (18)

To simplify, one introduces a new quantity Fn(r ) = Pn(r )/4πρ0r . The recursion
relation for Fn(r ), upon substituting the explicit form of w(r |r ′) from Eq. (18) in
Eq. (17), then simplifies

Fn(r ) = 1

2

∫ r+1

max(R,r−1)
Fn−1(r ′)dr ′

=
∫ ∞

R
Fn−1(r ′) f (r − r ′)dr ′ (19)

where f (y) corresponds to the uniform probability density over the interval y ∈
[−1, 1], i.e. f (y) = 1/2 if −1 ≤ y ≤ 1 and f (y) = 0 otherwise. The recursion
in Eq. (19) now starts with the initial condition, F0(r ) = rθ (r − R). One can
simplify Eq. (19) further by introducing a shift, i.e. defining z = r − R, and
writing Fn(r ) = Fn(z + R) = Qn(z), Eq. (19) becomes, for all z > 0,

Qn(z) =
∫ ∞

0
Qn−1(z′) f (z − z′) dz′, starting with Q0(z) = R + z (20)

Defining the generating function, Q̃(z, s) = ∑∞
n=0 Qn(z)sn , one obtains an iden-

tical Wiener-Hopf integral equation as in Eq. (15),

Q̃(z, s) = s

∫ ∞

0
Q̃(z′, s) f (z − z′)dz′ + Q0(z), (21)
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the only difference is in the inhomogeneous term Q0(z) = R + z that is set by the
initial condition. One then needs to solve this integral equation to obtain Qn(z),
from which one can read off the density profile at step n

ρn(r ) = Pn(r )

4πr2
= ρ0

r
Fn(r ) = ρ0

r
Qn(r − R). (22)

The flux to the sphere at time step n can then be computed from the following
relation(4)

�(n) =
∫ ∞

R
dr ′

∫ R

0
drw(r | r ′)Pn−1(r ′) (23)

= πρ0

∫ R+1

R
[R2 − (r ′ − 1)2]Fn−1(r ′)dr ′ (24)

= πρ0

∫ 1

0
[2R(1 − z) − (1 − z)2] Qn−1(z) dz (25)

In going from Eq. (23) to (24) we have used the explicit form of w(r |r ′) in
Eq. (18).

We end this section with one remark. For a continuous-time Brownian motion
it is quite standard(6,12) that, using the transformation ρ(r, t) = ρ0 F(r, t)/r , the
3-d diffusion equation for the density field ρ(r, t) can be reduced to a 1-d diffusion
equation; the same trick naturally works for the 3-d Schrödinger equation as well.
Based on this fact, it is natural that a similar transformation ρn(r ) = ρ0 Fn(r )/r
would also work for the discrete-time problem. However, the fact, that the reduced
1-d problem satisfies exactly the same integral equation (albeit with a different
initial condition) with the same uniform kernel as the 1-d maximum displacement
problem, is hard to guess apriori without the explicit calculation as presented
here.

4. WIENER-HOPF PROBLEM

We have seen from the previous sections that the two a priori different
problems (I) maximum of a random walker hoping on a line and (II) flux to
a spherical trap in three dimensions can be both recast as the same Wiener-
Hopf integral equation problem, albeit with different inhomogeneous terms arising
due to the difference in the initial conditions of the two problems. The general
mathematical problem then is to solve the following half-space inhomogeneous
integral equation for z > 0

ψ(z, s) = s

∫ ∞

0
ψ(z′, s) f (z − z′)dz′ + J (z). (26)
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where the inhomogeneous source term J (z) is different for the two problems

J (z) = 1 for Problem I (27)

= R + z for Problem II. (28)

Even though in both of these problems the kernel f (z − z′) corresponds to the
uniform jump density, i.e.

f (x) = 1

2
for − 1 ≤ x ≤ 1

= 0 otherwise, (29)

it is useful to study the integral Eq. (26) with a general continuous and symmetric
kernel f (z) = f (−z) that is normalized

∫ ∞
−∞ f (z)dz = 1 and has a finite second

moment σ 2 = ∫ ∞
−∞ z2 f (z)dz.

The explicit solution ψ(z, s) of Eq. (26) with different source terms as in
Eqs. (27) and (28) will then provide the solutions to the two problems. In Problem I,
ψ(z, s) = q̃(z, s) = ∑∞

n=0 qn(z)sn provides the generating function for the cumu-
lative distribution of the maximum of the random walk up to n steps. In Problem II,
ψ(z, s) = Q̃(z, s) = ∑∞

n=0 Qn(z)sn gives the generating function for the density
profile ρn(r ) = ρ0 Qn(z = r − R)/r of the particles outside the sphere of radius
R in three dimensions. It turns out, as will be shown later explicitly, that the differ-
ence in the source term in Eqs. (27) and (28) actually leads to completely different
types of solutions to the integral equation (26). In Problem I, the solution qn(z)
depends explicitly on n even at late times, i.e. for large n, and does not have an
n-independent stationary solution. Rather it has a scaling solution involving both
z and n. In contrast, the solution Qn(z) in Problem II approaches an n-independent
stationary solution.

4.1. Explicit Solution for Exponential Kernel

Before providing the general solution for arbitrary continuous and symmetric
kernel f (z), it is instructive to derive the explicit solutions with the two different
source terms for a special kernel f (z) = exp[−|z|]/2. This will clearly bring out
how the different source terms lead to different behavior of the same integral
equation. The exponential kernel f (z) = exp[−|z|]/2 is special since one can
recast the integral equation (26) into a differential equation by using the identity
f ′′(z) = f (z) − δ(z), where f ′′(z) = d2 f/dz2. Differentiating Eq. (26) twice with
respect to z and using the above identity, one gets for all z > 0

d2ψ

dz2
= (1 − s)ψ(z, s) + J ′′(z) − J (z). (30)
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Consider first Problem I where J (z) = 1. Then the most general solution of
Eq. (30) is given by,

ψI(z, s) = 1

(1 − s)
+ A1(s) e−√

1−s z + B1(s) e
√

1−s z, (31)

where A1(s) and B1(s) are two arbitrary z independent constants. Since the solution
cannot diverge exponentially as z → ∞, one gets B1(s) = 0. We need to still
determine the constant A1(s). Here we use a method that is slightly different from
that used in ref. 3. We substitute the solution in Eq. (31) into the integral equation
(26). Performing the integration explicitly, one finds that the solution in Eq. (31)
satisfies the integral equation if and only if A1(s) = −[1 − √

1 − s]/(1 − s). Thus,
the full solution is given by(3)

ψI(z, s) =
∞∑

n=0

qn(z)sn = 1

(1 − s)
− 1 − √

1 − s

1 − s
e−√

1−s z . (32)

One can then get the expected maximum from this explicit solution by an integra-
tion and an expansion in powers of s(3)

E[Mn] = 2√
π


(n + 3/2)


(n + 1)
− 1 
 2

√
n

π
− 1 as n → ∞, (33)

which is of the same general form as in Eq. (4) with σ = √
2 and c = 1. In

addition, it is also instructive to derive the solution qn(z) for large n by analysing
its generating function in Eq. (32) in the vicinity of s = 1. Taking the limits s → 1
and z → ∞ but keeping z

√
1 − s fixed, one can replace the generating function

by a Laplace transform, and inverting the Laplace transform one gets the scaling
solution valid for large n

qn(z) 
 erf

(
z√
4n

)
+ 1√

πn
e−z2/4n, (34)

where erf(z) = 2 π−1/2
∫ z

0 e−u2
du is the error function. Note that the first term on

the rhs of Eq. (34) corresponds to the continuum solution of the diffusion equation
for a particle starting at z > 0 and staying above an absorbing boundary at 0, which
is also the same as the cumulative probability that the maximum of a continuous-
time Brownian motion stays below z up to time t , provided one makes the standard
correspondence σ 2n = 2Dt between the discrete step number n and the continuous
time t , D being the diffusion constant for the Brownian motion. The second term on
the rhs of Eq. (34) corresponds to the leading correction due to discrete jumps and
indeed is responsible for the constant c in Eq. (4). This can be seen by substituting
the scaling solution in Eq. (34) in the exact relation, E[Mn] = ∫ ∞

0 (1 − qn(z))dz.
Upon integrating, one recovers the large-n asymptotic solution in Eq. (33) and one
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sees explicitly that indeed the constant c = 1 in Eq. (33) arises from the integration
of the second term in Eq. (34).

We now turn to Problem II where J (z) = R + z. Proceeding exactly as in
the first case one finds that the explicit solution of the differential equation (30) is
given by

ψII(z, s) = R + z

1 − s
+ A2(s) e−√

1−s z, (35)

where we have used the boundary condition that the solution cannot diverge
exponentially as z → ∞. Substituting this solution in the integral equation (26)
fixes the constant A2(s) and we get the full solution,

ψII(z, s) =
∞∑

n=0

Qn(z)sn = R + z

1 − s
+ (1 − R)

1 − √
1 − s

(1 − s)
e−√

1−s z . (36)

The behavior of Qn(z) for large n can be derived by analysing the generating
function near s = 1. In this case, one finds that for large n,

Qn(z) 
 (z + 1) + (R − 1) erf

(
z√
4n

)
+ R − 1√

πn
e−z2/4n. (37)

Comparison with the asymptotic solution of Problem I in Eq. (34) shows that
in Problem II, the solution approaches an n-independent stationary solution as
n → ∞

Q∞(z) = z + 1 for all z ≥ 0. (38)

This solution is also independent of R; all terms containing R in Eq. (37) disappear
in the long-time limit. The corrections to this stationary solution for large n have
the scaling forms similar to Problem I.

In fact, we will show in the next section that quite generically, i.e. for arbitrary
continuous and symmetric kernel f (z), the solution Qn(z) for Problem II always
approaches a stationary solution Q∞(z) which is, generically, a nontrivial function
of z. However, for large z, we will show that this stationary solution has a rather
simple asymptotic,

Q∞(z) 
 z + c′ as z → ∞, (39)

where the constant c′ will be shown to be exactly equal to c in Eq. (5). In particular,
for the uniform distribution f (z) given in Eq. (29) where one can relate back
to the original 3-d flux problem, we will show that indeed this same constant
c′ = c appears as the extrapolation length in the expression for flux in Eq. (9).
In the particular example of the exponential kernel f (z) = exp[−|z|]/2, we see
explicitly that indeed c′ = c = 1 by inspecting Eqs. (38) and (33). This thus
proves a special case of the general result c′ = c valid for arbitrary continuous
and symmetric kernel f (z). Note also that for this special case of the exponential
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kernel, the stationary solution Q∞(z) in Eq. (38) actually retains its asymptotic
form in Eq. (39) all the way down to z = 0. This property, however, is rather
special to the exponential kernel. For a generic continuous and symmetric kernel,
Q∞(z) has a nontrivial form for small z as will be shown in the next section.

Another quantity of interest, as we will see later in a more general context, is
the transient behavior of Qn(0) for Problem II. It follows by subsituting z = 0 in
Eq. (36)

∞∑
n=0

Qn(0)sn = 1

1 − s
+ R − 1√

1 − s
. (40)

Expanding the rhs of Eq. (40) in powers of s one gets

Qn(0) = 1 + (R − 1)

(
2n

n

)
1

22n

 1 + (R − 1)√

πn
as n → ∞. (41)

We will see later that this transient behavior for the exponential kernel confirms,
as a special case, the validity of a general result in Eq. (96) proved for arbitrary
continuous and symmetric kernels.

5. GENERAL SOLUTION TO THE WIENER-HOPF PROBLEM

In this section, we present an explicit solution to the integral equation (26)
for the two different inhomogeneous terms in Eqs. (27) and (28). Our result is
valid for any arbitrary continuous and symmetric kernel f (z) that is normal-
ized,

∫ ∞
−∞ f (z)dz = 1 and with a finite second moment σ 2 = ∫ ∞

−∞ z2 f (z)dz. Our
method relies on a beautiful general formalism developed by Ivanov(13) to deal
with half-space problems in the context of photon scattering. Let us first summa-
rize this formalism. Consider the integral equation (26) with an arbitrary source
term J (z). There are three steps to obtain the solution.

1. The first step is to define a Green’s function G(z, z1, s) that satisfies the
same integral equation but with a delta function source term, i.e.

G(z, z1, s) = s

∫ ∞

0
G(z′, z1, s) f (z − z′)dz′ + δ(z − z1). (42)

It is then easy to see that the solution of the inhomogeneous equation (26)
is given by

ψ(z, s) =
∫ ∞

0
G(z, z1, s)J (z1)dz1. (43)
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2. The next step is to determine the Green’s function G(z, z1, s) that satisfies
Eq. (42). One first defines the double Laplace transform,

G̃(λ, λ1, s) =
∫ ∞

0
dz e−λz

∫ ∞

0
dz1 e−λ1z1 G(z, z1, s). (44)

Ivanov showed that this double Laplace transform can be determined in
closed form by solving Eq. (42) and is given by a simple form(13)

G̃(λ, λ1, s) = φ(s, λ) φ(s, λ1)

λ + λ1
, (45)

where the function φ(s, λ) is the following Laplace transform

φ(s, λ) =
∫ ∞

0
dz e−λz G(z, 0, s) (46)

3. The third step is to obtain an explicit expression(13) for the function
φ(s, λ)

φ(s, λ) = exp

[
− λ

π

∫ ∞

0

ln(1 − s f̂ (k))

λ2 + k2
dk

]
, (47)

where f̂ (k) = ∫ ∞
−∞ f (x) eikx dx is the Fourier transform of the kernel

f (x).

Substituting the explicit expression for φ(s, λ) from Eq. (47) into Eq. (45),
one has an explicit expression for the double Laplace transform G(λ, λ1, s). By
inverting this double transform, one can obtain the Green’s function G(z, z1, s), at
least in principle. Subsequently, by performing the integral in Eq. (43) one obtains
the required solution ψ(z, s). In practice, however, these last two steps are difficult
to carry out explicitly in general. However, for the two special source terms in
Eqs. (27) and (28), we show below that one can make progress.

5.1. General Solution for Problem I

Consider first Problem I where J (z) = 1. Then, Eq. (43) gives

ψI(z, s) =
∫ ∞

0
G(z, z1, s)dz1. (48)

Let us define the Laplace transform

ψ̃I(λ, s) =
∫ ∞

0
ψI(z, s) e−λz dz. (49)
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Taking the Laplace transform with respect to z in Eq. (48) we get

ψ̃I(λ, s) =
∫ ∞

0
dz e−λz

∫ ∞

0
G(z, z1, s) dz1 = G̃(λ, 0, s). (50)

Eqs. (45) and (47) then give

ψ̃I(λ, s) = 1

λ
φ(s, λ) φ(s, 0) (51)

where φ(s, λ) is given in Eq. (47). Let us first evaluate φ(s, 0). Note that one cannot
naı̈vely put λ = 0 in the expression in Eq. (47) since the integral multiplying λ

inside the exponential in Eq. (47) diverges as λ → 0. Hence one needs to extract
the value of φ(s, 0) carefully. To achieve this, an alternate expression for φ(s, λ)
that was obtained in ref 3 turns out to be useful. It was shown in ref. 3 that φ(s, λ)
in Eq. (47) can also be written as

φ(s, λ)= 1[√
1 − s + σλ

√
s/2

]exp

[
− λ

π

∫ ∞

0

dk

λ2 + k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)]
.

(52)

This representation is useful to derive the properties of φ(s, λ) near λ = 0. On
the other hand, the representation in Eq. (47) is useful to extract the asymptotic
behavior of φ(s, λ) for large λ. Taking λ → 0 limit in Eq. (52) one gets

φ(s, 0) = 1√
1 − s

, (53)

which, when substituted in Eq. (51) gives

ψ̃I(λ, s) =
∞∑

n=0

sn

∫ ∞

0
qn(z) e−λz dz = 1

λ
√

1 − s
φ(s, λ) (54)

where φ(s, λ) is defined in Eq. (47) and has also an alternative expression as in
Eq. (52). This result in Eq. (54) goes by the name of the Pollaczek-Spitzer formula
which was originally derived using completely different methods(14,15). This result
was subsequently utilized in ref. 3 to extract the constant c in Eq. (4) appearing
as a subleading term for large n in the expected maximum E[Mn] of a random
walker.

5.2. General Solution for Problem II

We now turn to Problem II where J (z) = R + z. We get from Eq. (43)

ψII(z, s) =
∫ ∞

0
(R + z1)G(z, z1, s)dz1. (55)
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Taking the Laplace transform, ψ̃II(λ, s) = ∫ ∞
0 ψII(z, s) e−λz dz gives

ψ̃II(λ, s) =
∫ ∞

0
dz e−λz

∫ ∞

0
(R + z1) G(z, z1, s) dz1

= R G̃(λ, 0, s) − ∂G̃(λ, λ1, s)

∂λ1
|λ1=0. (56)

Eqs. (45) and (47) then give

ψ̃II(λ, s) = 1

λ

[(
R + 1

λ

)
φ(s, 0) − ∂φ̃(s, λ1)

∂λ1
|λ1=0

]
φ(s, λ) (57)

where φ(s, λ) is given in Eq. (47) or alternately in Eq. (52). Using the representation
in Eq. (52) one gets

∂φ̃(s, λ1)

∂λ1
|λ1=0 = − σ

(1 − s)

√
s

2
− 1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)
.

(58)

Substituting this result in Eq. (57) and using ψ(s, 0) = 1/
√

1 − s from Eq. (53)
gives

ψ̃II(λ, s) = 1

λ

[
1√

1 − s

(
R + 1

λ

)
+ σ

(1 − s)

√
s

2
+ 1

π
√

1 − s

×
∫ ∞

0

dk

k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)]
φ(s, λ). (59)

5.3. Analysis of the Results

Thus the Laplace transform of the solution to the integral equation (26)
for both problems respectively with J (z) = 1 (Problem I) and J (z) = R + z
(Problem II) can be written as a product of two functions

ψ̃(λ, s) = W (s, λ) φ(s, λ) (60)

where φ(s, λ) is given in Eq. (47) or in Eq. (52) and is independent of the source
term. The function W (s, λ), however, depends explicitly on the source term, i.e.
on the initial conditions of the original recursion relations in Eqs. (14) and (20)
and has different expressions for the two problems. While for Problem I it is rather
simple

WI (s, λ) = 1

λ
√

1 − s
, (61)
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for Problem II it has a more complicated expression

WI I (s, λ) = 1

λ

[
1√

1 − s

(
R + 1

λ

)
+ σ

(1 − s)

√
s

2
+ 1

π
√

1 − s

×
∫ ∞

0

dk

k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)]
(62)

Since the function φ(s, λ) appears in both problems, it is useful to first list
its asymptotic properties for small and large λ. For small λ, it is convenient to use
the representation in Eq. (52). On the other hand, for large λ, the representation in
Eq. (47) turns out to be more convenient. We find

φ(s, λ) 
 1√
1 − s

− α(s)λ + O(λ2) as λ → 0 (63)


 1 − β(s)

λ
+ O(λ−2) as λ → ∞ (64)

where the two functions α(s) and β(s) are given by

α(s) = σ

(1 − s)

√
s

2
+ 1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)
(65)

β(s) = 1

π

∫ ∞

0
dk ln

[
1 − s f̂ (k)

]
. (66)

Now we are ready to obtain the constants c in Problem I and c′ in Problem II
and show that indeed they are same, as they both emerge from the properties of
the function φ(s, λ) that is common to both the problems. We consider the two
problems separately.

Expected maximum in Problem I: Consider first Problem I. Consider
the Laplace transform of the distribution of the maximum, E[e−λMn ] ≡∫ ∞

0 e−λ zq ′
n(z) dz = λ

∫ ∞
0 e−λ zqn(z) dz. It follows from Eq. (54)

∞∑
n=0

sn E[e−λMn ] = 1√
1 − s

φ(s, λ). (67)

We expand both sides in λ for small λ and use Eq. (63) for the expansion of the
rhs of Eq. (67). Comparing the term linear in λ one gets

∞∑
n=0

sn E[Mn] = α(s)√
1 − s

, (68)

where α(s) is given in Eq. (65). To extract the large n behavior of E[Mn], we need
to analyse the generating function in Eq. (68) near s → 1. Expanding the rhs of
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Eq. (68) near s = 1 one gets

∞∑
n=0

sn E[Mn] 
 σ√
2 (1 − s)3/2

+ 1

π (1 − s)

∫ ∞

0

dk

k2
ln

[
(1 − f̂ (k)

σ 2k2/2

]

+ O((1 − s)−1/2). (69)

Inverting one gets the large n result(3)

E[Mn] = σ

√
2n

π
− c + O(n−1/2), (70)

where the constant c is given by the integral in Eq. (5).
Steady-state density profile in Problem II: Turning now to Problem II, we

first show that for large n, Qn(z) approaches a stationary solution Q∞(z). From
the definition, we have

∞∑
n=0

sn
∫ ∞

0
Qn(z) e−λ z dz = ψ̃II(λ, s), (71)

where ψ̃II(λ, s) is given in Eq. (59). Thus, if Qn(z) → Q∞(z) as n → ∞, then the
lhs of Eq. (71) will behave as

∞∑
n=0

sn
∫ ∞

0
Qn(z) e−λ z dz 
 1

1 − s

∫ ∞

0
Q∞(z)e−λ z dz as s → 1. (72)

We now expand the rhs of Eq. (71) near s = 1 using the explicit expression of
ψ̃II(λ, s) in Eq. (59). We find from Eq. (59) that as s → 1, the leading order term
behaves as

ψ̃II(λ, s) 
 σ φ(1, λ)√
2λ (1 − s)

. (73)

Comparing Eqs. (72) and (73) gives the exact Laplace transform of the stationary
solution ∫ ∞

0
Q∞(z)e−λ z dz = σ φ(1, λ)

λ
√

2
, (74)

where φ(1, λ) can be obtained by putting s = 1 either in Eq. (47) or alternately in
Eq. (52). Both expressions are equivalent and one gets∫ ∞

0
Q∞(z)e−λ z dz = σ

λ
√

2
exp

[
− λ

π

∫ ∞

0

dk

λ2 + k2
ln(1 − f̂ (k))

]
(75)

= 1

λ2
exp

[
− λ

π

∫ ∞

0

dk

λ2 + k2
ln

(
1 − f̂ (k)

σ 2k2/2

)]
. (76)
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As a check, one can verify that for the exponential kernel f (x) = exp[−|x |]/2 so
that f̂ (k) = 1/(1 + k2) and σ = √

2, Eq. (76) gives∫ ∞

0
Q∞(z)e−λ z dz = 1

λ2
+ 1

λ
(77)

which, when inverted, gives Q∞(z) = z + 1, in agreement with Eq. (38).
For a general kernel f (z), it is difficult to invert the Laplace transform in

Eqs. (75) or (76). However, one can easily extract the asymptotic behavior for
large and small z. Consider first the large z behavior. In this case, the expression
in Eq. (76) is more convenient. Expanding the rhs of Eq. (76) for small λ we get∫ ∞

0
Q∞(z)e−λ z dz 
 1

λ2
− 1

λ π

∫ ∞

0

dk

k2
ln

[
1 − f̂ (k)

σ 2k2/2

]
. (78)

Inverting the Laplace transform, one gets

Q∞(z) 
 z + c′ as z → ∞ (79)

where

c′ = − 1

π

∫ ∞

0

dk

k2
ln

[
1 − f̂ (k)

σ 2k2/2

]
= c (80)

thus proving one of the main results of this paper. In particular, for the uniform
kernel in Eq. (29) such that f̂ (k) = sin(k)/k, we get

c′ = c = 0.29795219028 . . . (81)

The asymptotic exact result Q∞(z) → z + c′ as z → ∞ with c′ =
0.29795219028 . . ., when substituted in Eq. (22) in the steady-state n → ∞ limit,
provides the exact steady-state density profile in the original 3-d flux problem at
distance r 	 R,

ρ∞(r 	 R) = ρ0

r
Q∞(r − R) = ρ0

(
1 − R − c′

r

)
, (82)

in perfect agreement with the numerically observed(4) behavior in Eq. (11) (note
that we have set l = 1 in Eq. (11)).

Similarly, one can work out the small z behavior of Q∞(z) by analysing the
large λ behavior of the Laplace transform. In this case, the expression in Eq. (75)
is more convenient. Expanding Eq. (75) for large λ one finds∫ ∞

0
Q∞(z)e−λ z dz = σ√

2

[
1

λ
− 1

πλ2

∫ ∞

0
dk ln(1 − f̂ (k)) + O(λ−3)

]
(83)
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Inverting the Laplace transform, we get

Q∞(z) 
 σ√
2

+ bz as z → 0, (84)

where b is a new constant given by

b = − σ

π
√

2

∫ ∞

0
dk ln(1 − f̂ (k)). (85)

For the exponential case, f̂ (k) = 1/(k2 + 1) and σ = √
2 we get from Eq. (85)

b = 1

π

∫ ∞

0
dk ln

[
(k2 + 1)

k2

]
= 1. (86)

Thus from Eq. (84), for the exponential kernel, we get Q∞(z) = z + 1 as z → 0,
in agreement with Eq. (38). For the uniform case, f̂ (k) = sin(k)/k and σ = 1/

√
3,

we get

b = − 1

π
√

6

∫ ∞

0
dk ln

[
1 − sin(k)

k

]
= 0.653857 . . . (87)

Thus, for the uniform kernel, the small z behavior of Q∞(z) from Eq. (84) reads
as

Q∞(z) 
 1√
6

+ (0.653857 . . .) z as z → 0 (88)

This is in perfect agreement with the numerical results obtained from the work
of ref. 4, Q∞(z) ≈ 0.408245 + 0.6538z as z → 0.4 Substituting the result from
Eq. (88) in Eq. (22) in the limit n → ∞, we find the steady-state density profile
in the original 3-d flux problem near the surface r → R

ρ∞(r → R) = ρ0

r
Q∞(r − R) ≈ ρ0

R

(
1√
6

+ (0.653857 · · ·) (r − R)

)
. (89)

In particular, on the surface, the steady-state density approaches to a constant
value

ρ∞(R) = 1√
6

ρ0

R
, (90)

thus proving the numerically observed(4) relation in Eq. (12) and identifying the
constant 0.408245 as 1/

√
6 (note that we have set l = 1 in Eq. (12)).

Transient behavior in Problem II: Another quantity that was investigated
numerically in ref. 4 is the transient behavior of Qn(0) for large n, where it was

4 The numerical value of the slope at z = 0 in this formula was determined from the data collected
in the work in ref. 4, but not published in that paper. We deduced the value given here before we
determined the theoretical result given in Eq. (88).
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found that for the uniform kernel in Eq. (29)

Qn(0) ≈ 0.408245 +
(

R√
π

− 0.17

)
n−1/2 (91)

Our exact solution reproduces this result also. To see this, we investigate our
explicit solution in Eq. (59) for a general continuous and symmetric kernel. By
taking λ → ∞ limit in Eq. (71) we see that the lhs behaves as

∞∑
n=0

sn
∫ ∞

0
Qn(z) e−λ z dz 
 1

λ

∞∑
n=0

Qn(0)sn as λ → ∞. (92)

On the other hand, expanding the exact expression of ψ̃II(λ, s) in Eq. (59) for large
λ, we find that the rhs of Eq. (71) behaves as

ψ̃II(λ, s) 
 1

λ

[
α(s) + R√

1 − s

]
as λ → ∞ (93)

where α(s) is given in Eq. (65). Equating Eqs. (92) and (93) and using the ex-
pression for α(s) from Eq. (65) we get an exact expression for the generating
function

∞∑
n=0

Qn(0)sn = σ

(1 − s)

√
s

2
+ 1

π
√

1 − s

∫ ∞

0

dk

k2
ln

(
1 − s f̂ (k)

1 − s + sσ 2k2/2

)

+ R√
1 − s

. (94)

Now, analysing the behavior near s = 1 of the rhs of Eq. (94), one can get the
leading asymptotic behavior of Qn(0) for large n. One gets the leading behavior
near s = 1,

∞∑
n=0

Qn(0)sn 
 σ√
2 (1 − s)

+ (R − c)√
1 − s

(95)

where c is the same constant as in Eq. (5). Inverting, one obtains an exact asymp-
totic result for large n

Qn(0) 
 σ√
2

+ (R − c)√
π

n−1/2 (96)

In particular, for the uniform kernel f̂ (k) = sin(k)/k with σ = 1/
√

3 and c =
0.29795219028 . . . from Eq. (81) we get

Qn(0) 
 1√
6

+ (R − 0.29795219028 . . .)√
π

n−1/2 = 0.40824829 . . .

+
(

R√
π

− 0.168101522 . . .

)
n−1/2, (97)

in excellent agreement with the numerical results(4) stated in Eq. (91).
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6. SPARRE ANDERSEN THEOREM FOR PROBLEM I AND ITS

ANALOGUE FOR PROBLEM II

The recursion relation in Eq. (14) satisfied by the qn(z)’s in Problem I has an
explicit solution given in Eq. (54). From this explicit solution, one can easily extract
qn(0), the probability that a random walker starting at the origin stays positive (or
negative) up to n steps. Indeed, the integral

∫ ∞
0 qn(z)e−λzdz → qn(0)/λ in the

λ → ∞ limit. On the other hand, the rhs of Eq. (54) tends to 1/λ
√

1 − s as
λ → ∞ since φ(s,∞) = 1. Matching the lhs and the rhs gives,

∞∑
n=0

qn(0)sn = 1√
1 − s

. (98)

Expanding the rhs of Eq. (98) in powers of s and identifying the coefficient of sn

on both sides, one gets for all n

qn(0) =
(

2n

n

)
1

22n
. (99)

The amazing fact is that the result in Eq. (99) is universal for all n, i.e. it does not
depend on the density function f (z) as long as f (z) is continuous and symmetric.
This, in fact, is the celebrated Sparre Andersen theorem which was originally
proved using combinatorial methods(16) and has since been reproduced by various
other methods(15,17). In particular, one notes from Eq. (99) that in the limit of large
n,

lim
n→∞[

√
nqn(0)] = 1√

π
= a universal constant (100)

A natural question is if there is an analogue of the universality à la Sparre
Andersen theorem for Problem II. The recursion relation for Problem II in Eq. (20)
is identical to that of Problem I in Eq. (14), except that the initial condition
Q0(z) = R + z is different from that in Eq. (14). The question is whether Qn(0)
still remains universal with this different initial condition. Indeed, the answer to
this question is evident from our exact result in Eq. (94). It is clear from Eq. (94)
that unlike in Problem I, Qn(0) in Problem II is not universal for all n as it depends
explicitly on the density function f̂ (k). However, one recovers universality (up to
a constant scale factor σ ) asymptotically, i.e. in the limit of large n. Indeed, it
follows from Eq. (96)

lim
n→∞

Qn(0)

σ
= 1√

2
= a universal constant (101)

Thus Qn(0), scaled by σ , approaches a universal constant 1/
√

2 as n → ∞,
independently of the density function f (z) as long as f (z) is continuous, symmetric
and has a finite second moment σ 2 = ∫ ∞

−∞ z2 f (z) dz. The result in Eq. (101) for
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Problem II can be thought of as an asymptotic analogue of the Sparre Andersen
result in Eq. (100) for Problem I.

7. CONCLUSIONS

We have shown that the two apparently different discrete-time random walk
problems, the expected maximum in one dimension and the three-dimensional flux
to a trap, are intimately related in that they end up satisfying the same recursion
relation, but with different initial conditions. We confirmed that the constant c′ in
the flux problem is identical to the constant c in the expected-maximum problem,
and thus provide an exact derivation for this constant which was previously found
only numerically, fourteen years ago. We also find the surprisingly simple result
that the steady-state density in the flux problem reaches a constant at the boundary
of the sphere, ρ∞(R) = ρ0l/(

√
6R) or equivalently Q∞(0) = 1/

√
6, and find

explicitly both the asymptotic time-dependent approach to that value, Eq. (97),
and the slope of the density at the wall at z = 0 in the steady state, Eq. (88).

For the flux problem, c′ represents the extrapolation length inside the bound-
ary where the steady-state solution far from the sphere ρ∞(r ) = ρ0(r − R + c′�)/r
goes to zero. That is, the solution far from the sphere assumes the form of the
solution to the diffusion equation, but with the effective boundary somewhat in-
side the actual boundary. Putting this expression into the formula for the flux,
� = 4πr2 D(d/dr )ρ∞(r ), yields the leading term in Eq. (9) (with l = 1). We
evaluate � for large r where the solution is valid, and the result is naturally
independent of r because it is in steady state.

In this paper, we have presented explicitly the steady-state density profile
for the 3-d discrete flux problem. As mentioned above, this solution suffices to
predict immediately the leading behavior of the flux �(t) as t → ∞ in Eq. (9).
To obtain the subleading time-dependent term given in Eq. (9), it is necessary
to study the large time asymptotic behavior of the integral in Eq. (25). Indeed,
using the asymptotic solution for Qn(z) derived here, it is possible to calculate this
subleading term explicitly; we have not presented this calculation here and it will
be published elsewhere(18). It is worth remarking that in the result found for the
flux in Eq. (9), the combination R − c′l enters in the time-dependent correction in
the same form as in the steady-state term—that is, the extrapolation-length idea
also figures in the asymptotically large-time behavior of the system.

We have considered the three-dimensional flux problem here, in which parti-
cles undergo a Rayleigh flight of unit step length. The resulting equation, Eq. (20),
can also be interpreted as representing a one-dimensional flux problem where the
particles undergo a uniformly distributed jump, with an adsorbing boundary at
z = 0. For the one-dimensional interpretation, however, the initial condition is
uniform rather than linear as in (28). (Call this Problem II’). Then Problems I and
II’ become identical, with E[Mn] of the former, Eq. (13), corresponding to the
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total integrated flux up to time n of the latter. For a uniform jump distribution,
Eq. (3) thus gives the accumulated flux up to time n. In ref. 4, the quantity a(2)(n) of
Eq. (10a) is equal to six times the flux at time n for precisely this one-dimensional
problem. Summing the data for a(2)(n)/6 up to time n (some of which data is
presented in Table I of that paper), we indeed find that Eq. (3) (including c) is
satisfied, with the next correction approximately equal to 0.0921n−1/2. In fact, the
latter agrees with the prediction (1/5)

√
2/3πn = 0.09213177 . . . n−1/2 given in

ref. 2 and this prediction also agrees with the conjectured behavior of a(2)(n) given
in Eq. (21c) of ref. 4. Thus, we have verified an additional conjecture of ref. 4.

On the mathematical side, we have discussed explicit solutions to the Wiener-
Hopf type integral equations for continuous and symmetric kernel with a finite
second moment σ 2. This is because both the physics problems that we were in-
terested in this paper have kernels that satisfy these properties. Mathematically it
is interesting to ask how the solutions would change if the kernel is asymmetric
or for example, does not have a finite second moment. This later problem with
diverging second moment corresponds to discrete-time Lévy flights and at least
for the expected maximum problem (Problem I), exact results using similar tech-
niques have recently been obtained(3). On the other hand, while general solutions
to the Wiener-Hopf type integral equations with asymmetric kernels can, in prin-
ciple, be obtained(13), they are mostly not explicit. Finding explicit solutions with
asymmetric kernels remains a hard and challenging problem.

Finally, our solution of the recursion relation in Eq. (14) with a constant initial
condition includes, as a special case, a simple derivation of the Sparre Andersen
theorem that states that qn(0), i.e. the probability that starting at 0 a random walker’s
path stays above (or below) 0 up to n steps, is independent of the jump density
function as long as it is continuous and symmetric. However, we have proved that
for the same recursion relation, but with a linear initial condition as in Eq. (20),
the universality in Qn(0) holds only asymptotically for large n up to a constant
factor, i.e. the ratio Qn(0)/σ (where σ is the standard deviation associated with the
jump density function) approaches to a universal constant 1/

√
2, irrespective of

the details of the jump density function as long as it is continuous and symmetric.
This paper provides a rigorous proof of this new theorem.
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